
Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 8; April-June, 2015 pp. 6-8
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/acsit.html

A Survey on Model Based Test Case Generation
using UML Diagrams

Afreen Ali1 and Shailja Pandey2
1,2Babu Banarasi Das University, Lucknow

E-mail: 1afreenali67@gmail.com, 2shailjabbd@rediffmail.com

Abstract—Software testing is an important phase of Software
Development Life Cycle to maintain quality control, performance and
to produce high reliable system. At the early phase of software
development life cycle (SDLC), nobody including client and engineer
can see the product; just at the last phase of the item advancement it
is conceivable. Any issues discovered at the last stage, it acquires a
ton of expense and time to redress, which is all that much pivotal in
any industry. Modeling language like UML allows the visualization
of software at early stages of SDLC. Therefore, bugs can be
identified early so it serves to optimize the scheduled time and
development cost. Developing test cases is an imperative testing
artifact. There are often an immense amount of feasible test-cases for
testing software, but the fewest test cases with maximum coverage
should be the goal. Effective test case should identify the defects in
the system and also fulfills 100% coverage criteria. This paper
presents a survey on various test case generation techniques that
resides in the current literature.

Keywords: UML diagrams, test case generation

1. INTRODUCTION

Software testing is one of the most crucial phase of software
development. In software testing, the tester tests the system
with well designed inputs with intent to find errors.

The quality and reliability of the end product depend to a large
extend on testing. Therefore, more than 50% of software
development effort is spent on testing. Testing consists of
three steps: 1) Test case generation 2) Test case execution and
3) Test case evaluation. A test case is defined as a triplet set [I,
S, O], where I is the data input, S is the state of the system and
O is the output from the system. A test case is said to have
good coverage if it uncovers maximum number of faults with
minimum number of test cases. Combination of test cases
required to test a software is called test suite.

Various methods have been used to generate test case
automatically, which include formal and semi-formal
methods. Formal methods are based on mathematical
languages, techniques and tools. They are built based on the
structural properties of the System under test (SUT). Hence,
they serve the ability to verify the correctness in
implementation, discover ambiguity and inconsistency. Major

disadvantages of formal method are tool support is
insufficient, difficult to implement and lack of expert training.

Semi formal methods are based on models. This method is
very popular in current scenario and is used widely in software
industries. Sometimes a combination of formal and semi
formal methods is also used. Various approaches proposed for
automatic test case generation can be found in literature and
these have been classified as Model based test case generation,
Search based test case generation, Finite State Machine, Path
oriented, Goal oriented, etc.

In this paper literature survey is done on various
methodologies available for generating test cases from UML
models. The paper is organized as: Section 2 gives brief
introduction to Unified Modeling Language, Section 3 gives
Literature review, Section 4 enlists various UML tools and
Section 5 gives Conclusion.

2. UNIFIED MODELING LANGUAGE

The Unified Modeling Language (UML) is a visual modeling
language, which is a collective approach of James Rambaugh,
Grady Booch and Ivar Jacobson at Rational Software during
1994–95. It was adopted as a standard by the Object
Management Group (OMG) in 1997. UML is a tool supported,
industry-standardized and process independent modeling
language [6]. It is likewise utilized for designing, constructing,
documenting and modeling the artifacts of a software system.

UML diagrams are classified into three categories - structural
diagram, behavioral diagram and implementation diagram.
Structural diagrams are also called static diagrams. They
represent the objects of the system in terms of their classes,
operations, attributes, interface and relations. It includes class
and object diagrams. Behavioral diagrams describe the
dynamic behavior of the system in terms of their interaction. It
includes use case diagram, activity diagram, sequence
diagram, collaboration diagram and state chart diagram.
Implementation diagrams depict the physical structure of the
system during build and run time. It includes component and
deployment diagram.

A Survey on Model Based Test Case Generation using UML Diagrams 7

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 8; April-June, 2015

3. LITERATURE REVIEW

In [1], Ranjita, Vikas and Prafulla have proposed an approach
to generate test cases from UML 2.0 activity diagrams. Firstly
an activity diagram in drawn in IBM Rational Rose tool.
Activity flow graph (AFG) is derived from the activity
diagram by traversing from beginning to the end. Then, a
required control flow sequence is extracted by traversing the
AFG by depth first traversing technique. Finally an algorithm
is proposed to generate test paths. A case study on Soft drink
vending machine is also presented.

In [2], V. Mary Sumalatha has described various techniques
used for software testing. Then, a new technique is proposed
to generate test cases from sequence diagram. Initially, a
sequence diagram is drawn then the sequence diagram is
converted into sequence graph using the proposed algorithm.
Weights are assigned to the nodes as the parent weight is the
weight of the node. If a node has multiple parents then sum of
parent’s weight is assigned to the node. Then, genetic
algorithm is applied to the sequence graph. All paths between
the source and destination are identified. Finally fitness value
and probability of individual is calculated. Crossover is
performed and fitness value is reevaluated until maximum
number of generations is reached or all the paths have been
covered or the fitness value minimizes. Best test path is
generated. At the end, case study of spider game card is
presented.

In [3], Robson and Turner have used black box testing method
for testing the interactions between the features of an object
and its states. They have focused on testing the state
dependent object’s behaviors. Object’s features are
implemented as objects methods. Finite state machine is used
to model state dependent object behaviors. And these models
generate test cases.

In [4], Hyungchoul Kim et al. have used I/O explicit activity
diagram to generate test cases. Activity diagram represent
system’s dynamic behavior by interaction of different objects
among themselves. Firstly they have drawn activity diagram.
Then they have generated activity directed graph from activity
diagram. This graph is used to generate test cases. The
problem of state explosion is avoided by using single stimulus
principle. This method reduces time and cost of the software
development process without compromising quality.

In [5], P. Samuel et al. have generated test cases using UML
state models. They have explored the data flow and control
flow logic of state diagrams. They have traversed the state
machine graph to identify the conditional predicates on each
transition. Then function minimization technique is applied on
these predicates to generate the test cases. Generated test cases
can be used for testing both class and cluster level behaviors.

In [7] S. Shanmuga Priya proposed an approach to generate
test cases from UML sequence diagram. The proposed work is
presented taking an example of medial consultation system.
Initially, sequence diagram of medical consultation system is

drawn using IBM rational rose tool and it is saved with .mdl
extension. The stored file is then parsed using java swing to
obtain a Sequence Dependency Table (SDT). The objects in
SDT are used as nodes to construct Sequence Dependency
Graph (SDG). Then, SDG is traversed using depth firth search
process to derive the test paths.

In [8], Noraida Ismail et al. proposed automatic test case
generation from UML use-case diagrams. GenTCase tool is
being built which automatically generates the test cases from
system functional requirements. Initially, requirements are
transformed into a use case diagram. Then use cases are used
to generate test case which can further be used by a
programmer to validate system requirements. They paid major
attention to reduce the cost of testing the system. The
procedure is explained by taking example of a book store
system.

In [9], Emanuela et al. have proposed a technique to generate
test cases from UML sequence diagrams. Then, these
sequence diagrams are translated into Labeled Transition
Systems (LTSs) early in the development phase. This reduces
the development cost. LTS was traversed using Depth First
Search method to derive test paths. An example of Motorola
mobile phone application was given.

4. UML TOOLS

Variety of UML tools is widely available. Some open source
UML tools are: Agro UML, Umbrello, FUJABA, Astade and
Coral. Commercially available modeling tools that support
UML Diagrams include IBM Rational Rose, Magic Draw,
gModeler, Visual thought, Eclipse UML, Rhapsody,
Modelistic, UM-Studio, Smart-Draw, MacA & D, Select
Component Architect, Sequence Sketcher, Ecto Set Modeller,
Proxy Designer, JVisi on, iUML, Embarcadero Describe,
WinA & D, HAT (HOORA Analysis Tool), Visual Paradigm
for the Unified Modeling Language (VP-UML), Object
Domain, Visual UML and Together. Few drawing tools are:
Visio and Omni raffle. Various open source drawing tools are:
Violet, DIA, UML etc

5. CONCLUSION

Unified Modeling Language (UML) has now become a
defacto model in the field of software testing. New techniques
for the generation of test case from these models required to
be discovered. This paper presents a literature survey on
generating test cases form UML models. Various procedures
that have been used for test case generation are been
discussed. This paper will help researcher to find out what
work has been done in their concerned field.

REFERENCES
[1] Ranjita Kumari Swain, Vikas Panthi, Prafulla Kumar,

“Generation of test cases using activity diagram”, International
Journal of Computer Science and Informatics, ISSN (PRINT):
2231 –5292, Volume 3, Issue 2, 2013.

Afreen Ali and Shailja Pandey

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 8; April-June, 2015

8

[2] V. Mary Sumalatha, “Object Oriented Test Case Generation
Technique using Genetic Algorithms”, International Journal of
Computer Applications (0975 – 8887) Volume 61– No.20,
January 2013.

[3] D. J. Robson and C. D. Turner, “The state-based testing of
object-oriented programs”; in Proceedings of IEEE Conference
on Software Maintenance, 1993, pp. 302 – 310.

[4] Hyungchoul Kim, Sungwon Kang, Jongmoon Baik, Inyoung
Ko, "Test Cases Generation from UML Activity Diagrams", 8th
ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/ Distributed
Computing 2007, pp. 556-561, doi:10.1109/ SNPD.2007.189.

[5] Samuel R. Mall A.K. Bothra, “Automatic test case generation
using unified modeling language (UML) state diagrams”, IET
Software, 2008, Vol. 2, No. 2, pp. 79–93/ doi: 10.1049/iet-
sen:2006006179.

[6] Peter Fettke, “Overview of the Unified Modeling Language”,
ISSN 1617-6332, URN urn:nbn:de:0006-0175.

[7] S. Shanmuga Priya, “Test Path Generation Using Uml Sequence
Diagram”, Volume 3, Issue 4, April 2013 ISSN: 2277 128X
International Journal of Advanced Research in Computer
Science and Software Engineering.

[8] Noraida Ismail, Rosziati Ibrahim, Noraini Ibrahim, “Automatic
Generation of Test Cases from Use-Case Diagram.”
Proceedings of the International Conference on Electrical
Engineering and Informatics Institute Technology, Bandung,
Indonesia, June 2007 pg:17-19.

[9] Emanuela G. Cartaxo, Francisco G. O. Neto and Patrıcia D. L.
Machado, “Test Case Generation by means of UML Sequence
Diagrams and Labeled Transition Systems”. Proceedings of the
IEEE International Conference on Systems, 7-10, October, Man
and Cybernetics, Montréal, Canada 2007.

